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A quasi-one-dimensional approach is used to examine the effects of gravita- 
tional forces on a horizontally extracted non-Newtonian-liquid jet. 

When one-dimensional polymer items are formed horizontally (films or fibers), gravi- 
tational forces affect the jets, and the same occurs in rheological research on longitudinal 
flows [i]. In experiments, the sagging is prevented by pulling in a bath of liquid having 
nearly the same density. The hydrodynamic friction then needs to be considered. Also, 
there are substantial difficulties in measuring the tensile stress for a liquid with medium 
viscosity [i]. 

The shape of a horizontally pulled jet is dependent in particular on the relation 
between the gravitational and rheological forces, where research has indicated a new and 
comparatively simple method of measuring the rheological parameters of polymers during 
stretching [2]. This can be used in new efficient methods of certifying the drawing 
parameters of polymer raw materials. Research on longitudinal polymer flow is important 
[3], and this aspect is of applied interest. 

In [4], an equilibrium study was made for a curved liquid jet stretched by its own 
weight, and a momentum-conservation equation was drawn up for isothermal conditions that 
incorporated the tension, the inertial forces, and the weight, but the flow scheme dis- 
cussed there restricted the scope for controlling the pulling. 

Here we consider the shape of a free jet pulled under nonisothermal conditions and 
composed of a non-Newtonian liquid subject to transverse gravitational forces; the flow is 
steady state in the Euler sense. 

i. Formulation. Figure i shows the flow scheme. The x and y coordinates character- 
ize the position of the cross-section center. The origin is located where the swelling 
ceases. The flow terminates at the point where the jet contacts the receiving roll (x = 
l, y = h), where the receiving point may be above the horizontal x axis (h > 0) or below 
it (h < 0). The pulling zone has a horizontal length Z. The point of maximum sag has 
coordinates x,, y,. The axial velocity v is homogeneous over the cross section F. The 
speed in the swelling section is vo, while the take-up speed is vl. 

We neglect inertial forces, friction from the surroundings, and surface effects; 
uniaxial isochoric inhomogeneous stretching occurs [5]. The transverse dimensions are 
much smaller than the stretching-zone length, ~<< l, and we neglect stresses due to jet 
bending [6, 7]. 

The equilibrium conditions [8] imply that the horizontal component H in the tension 
should be constant (H = const). The tangent is inclined at ~ ~ and the vertical tension 
component is H tan ~ . The weight of the jet element ds, whose horizontal projection 
is dx, is Fogdx/cos ~ . 

On the part between x and x + dx, the difference in the vertical tension component is 
equal to the weight of that jet part, so 

H ~d(tg~) QPg (1) 
dx vc os~  

H is balanced by rheological resistance forces, and the strain-rate tensor Idl in 
uniaxial flow is 
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Fig. i. Free-jet flow scheme. 
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and characterizes the stretching of polymer films [9] and fibers [i0]. Here 
for films if bo << l, i.e., pulling a narrow polymer ribbon. 

The stress components oij in general are 

6o---p6o + * o .  (i, j = 1, 2, 3). 

We assume that o ' t ,  has the direction of s. The stress tensor deviator components in (2) 
are Tij = ndij (i, j = i, 2, 3). 

We use a semiempirical expression [i0] for the material function: 

n--| 

: ~oZ 

(i) applies 

(2) 

where z e x p [ - - ~  ( T To 

We use the formulas of 

dv Iz 
O'n --= TI (dll - -  d22), dn  - -  d~  = 3 - - ,  

ds 2 
and get the axial stress as 

The horizontal tension component is 

-)]. 
[9] for the elongational flow: 

= 3  
ds ] ' 

H --  F 6 n  cos ~. (3)  

As t a n ~ = y ' ,  s e c t - - = - ] / l + y  'z, d s - - d x ] / [ - + y  'z, F = Q / v ,  w h e r e  t h e  l a s t  i s  d e r i v e d  on t h e  a s sump-  
t i o n  t h a t  p = c o n s t ,  (1)  and  (3)  b e c o m e  

o = qo___& V V + y ' ~ , .  (4) 
Hg" 

1 1 

"'dx "V----~ V ' f  ~lo z Y" V l-l-y '2 , (5)  

Here y' = dy/dx, y" = dy'/dx. 

We take the temperature as uniform over the cross section. The heat transfer with 
the environment~ which has temperature Tc, is described byNewton's law. There are no 
bulk heat sources. The heat-balance equation for a jet element ds long is [ii] 

pcvQdT ------ offI (T ~ TG) ds. (6) 
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Fig. 2. Dependence of the maximum dimensionless sag on 
B, K, and n: a) n = 0.2; b) 0.5; c) i; d) 2. The num- 
bers on the curves are the stretching factors. 

The heat-transfer coefficient ~ may include a radiative component [12]. 

We introduce dimensionless variables and parameters: 

Then (4), 

X =  X y g 
t l 

K ~ vl h , a = - - , A - -  
v o l 

(5), and (6) in dimensionless form are 

r"  = B V ~  + y , 2  
9 

AV 

v = - v  , O= T - - T o  X ,  x ,  y ,  
Vo 7o --  Te - 7 - '  g*'" l ' 

1 I 

H ( ogl B= z ( 
-I/2Opg I/3-rlo ' l /gv~ t ~ l " 

(7) 

1 

I l- v= B nri 
(8) 

o' - -- st  l / i  + g'~ - - ~ V  O. (9) 

Here a prime denotes a derivative with respect to X, St = 2~bol/PCvQ is the Stanton number 
for a ribbon jet, and St = 2~Zro/pcvQ is the same for a cylindrical jet. 

The boundary conditions are 

X = O ,  Y=O,  V = I ,  0 = 1 ,  (IO) 

X=-1,  Y = a ,  V = K .  (li) 
At the point of maximum sag, 

2. Isothermal Flow. 
T = const; as 

(8) can be written as 

X = X . ,  Y = Y . ,  d Y / d X = O .  (12) 

The solution to (7)-(12) can be represented in quadratures for 

dV dV 

dX  d Y '  

1 �9 

1 1 

dV , _ A ~ + 7  V~+-k-(1 + y,z)~ 
1 

dY '  B.- W 

We separate the variables and integrate on the basis of (i0) and (ii) to get the dimension- 
iless velocity 
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V = 
1 

-- c n  ga~ . 
(13) 

Here 

v ' =  Y '  = r '  = = 13 = t' cn ~d~,' sh~, ( X =  1) sh~, (X O) shoo. 
fo 

The dimensionless tension is 

A = 

Equation (7) can be written as 

1 1 n 

[ /~(1--K ")B" ]'~+~ 

dY' B -V 1 + y'2 
dX AV 

We separate the variables and integrate to get the longitudinal coordinate 

(14) 

A ivd~" X =  B ~ .  (15) 

We write (7) as 

y ,  _dY' = B "l/1 -}- Y'z 

d Y  AV 

We separate the variables and integrate to get 

y =  A .~,Vsh~d~. 
B ~o 

(16) 

In (13)-(16), 
take-up condition (ii). 
~ o  and ~,: 

is a parameter. The boundary values ~o and ~x are defined by the 
From (15), (16), and (ii) we get an integral-equation system for 

' ]"+' Ivan, 1 =  n(1 - - K - ~ )  " h 

1 n 

V sh ~d~. a = { 

(17) 

(18) 

The maximum-sag coordinates are defined by (12): 

1 n 0 

(19) 

X, 

I Ft 
0 =[ ]n+x ~ (20) 

3. Solution Analysis. Nonisothermal effects, which are characterized by the 
Stanton number, influence the longitudinal flow in the same way as does any increase in 
the dilatant parameters [12]. St increase is qualitatively equivalent to increase in n, 
so the analysis is performed only for the isothermal case. The initial data were: 
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take-up point at the efflux level a = 0; I.i E K E 50; 0.2 ~ n ~ 2; --i ~ ~o ~--0.i. The 
sequence was that we specified ~o and determined ~ from (18), and then (17) gave B, which 
was used with g~ in (19) to determine Y,. 

Figure 2 shows that Y, increases with B and as K decreases. For n ~ 0.2, the sag is 
almost independent of the stretching factor and is governed by B. For a Newtonian liquid 
(n = i) or a dilatant one (n > I), the sag is very much dependent on the stretching factor. 

Viscosity-anomaly effects have only a minor influence on the jet shape, as (20) shows 
(X, differs slightly from 0.5), and the shape for a = 0 is close to parabolic. The axial- 
velocity distribution is substantially dependent on the take-up point. As a increases, so 
does the axial-velocity gradient at the take-up point. One can vary a to control the 
pulling mode and forming conditions within certain limits. 

NOTATION 

x and y, current coordinates of cross-section center; l, pulling zone length along 
horizontal; h, take-up point ordinate; x, and y,, maximum sag coordinates; F, cross-section- 
al area; v, axial velocity; Vo and v~, initial and final velocities; H, horizontal tension 
component; ~ , tangent slope; s, jet length; p, polymer density; g, acceleration due to 
gravity; Q, volume flow rate; Idl, strain rate tensor; oij , stress components; p, isotropic 
pressure; ~ij, Kronecker symbol; Tij , stress tensor deviator; ~, viscosity; I2, second in- 
variant of s~rain rate tensor; no and n, rheological constants; z, temperature function; 
E, activation energy; R, universal gas constant; To, initial jet temperature; T, current 
jet temperature; Tc~ environmental temperature; Cv, specific heat; H, current middle 
perimeter; ~, heat-transfer coefficient; X and Y, dimensionless coordinates; 0, dimension- 
less temperature; X, and Y,, di~ensionless maximum-sag coordinates; K, stretching factor; 
a, A, B, 6, $o, ~I, dimensionless parameters; St~ Stanton number; bo, initial flat jet 
width; ro, initial jet radius; V, dimensionless velocity. 
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