FREE~JET FORMATION IN HORIZONTAL NON~-NEWTONIAN LIQUID PULLING
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A quasi-one-dimensional approach is used to examine the effects of gravita~
tional forces on a horizontally extracted non-Newtonian-liquid jet.

When one-dimensional polymer items are formed horizontally (films or fibers), gravi-
tational forces affect the jets, and the same occurs in rheological research on longitudinal
flows [1]. In experiments, the sagging is prevented by pulling in a bath of liquid having
nearly the same density. -The hydrodynamic friction then needs to be considered. Also,
there are substantial difficulties in measuring the tensile stress for a liquid with medium
viscosity [1].

The shape of a horizontally pulled jet is dependent in particular on the relation
between the gravitational and rheological forces, where research has indicated a new and
comparatively simple method of measuring the rheological parameters of polymers during
stretching [2]. This can be used in new efficient methods of certifying the drawing
parameters of polymer raw materials. Research on longitudinal polymer flow is important
[3], and this aspect is of applied interest.

In [4], an equilibrium study was made for a curved liquid jet stretched by its own
weight, and a momentum-conservation equation was drawn up for isothermal conditions that
incorporated the tension, the inertial forces, and the weight, but the flow scheme dis=~
cussed there restricted the scope for controlling the pulling.

Here we consider the shape of a free jet pulled under nonisothermal conditions and
composed of a non-Newtonian liquid subject to transverse gravitational forces; the flow is
steady state in the Euler sense. v

1. Formulation. Figure 1 shows the flow scheme. The x and y coordinates character-
ize the position of the cross-section center., The origin is located where the swelling
ceases. The flow terminates at the point where the jet contacts the receiving roll (x =
1, ¥y = h), where the receiving point may be above the horizontal x axis (h > 0) or below
it (h < 0). The pulling zone has a horizontal length Z. The point of maximum sag has
coordinates x4, ¥&. The axial velocity v is homogeneous over the cross section F., The
speed in the swelling section is vg, while the take-up speed is v,,

We neglect inertial forces, friction from the surroundings, and surface effects;
uniaxial isochoric inhomogeneous stretching occurs [5]. The transverse dimensions are
much smaller than the stretching-zone length, VF <<, and we neglect stresses due to jet
bending [6, 7].

The equilibrium conditions [8] imply that the horizontal component H in the tension
should be constant {H = const). The tangent is inclined at ¢ , and the vertical tension
component is H tan ¢ . The weight of the jet element ds, whose horizontal projection
is dx, is Fpgdx/cos ¢ .

On the part between x and x + dx, the difference in the vertical tension component is
equal to the weight of that jet part, so

g atee) Qg
dx U CoS @

(1)

H is balanced by rheological resistance forces, and the strain-rate tensor |d| in
uniaxial flow is
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Fig. 1. Free-jet flow scheme.
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and characterizes the stretching of polymer films [9] and fibers [10]. Here (1) applies
for films if bo<<Z, i.e., pulling a narrow polymer ribbon.

The stress components 013 in general are

Oy =—p&i+v;. (i, j=1 2, 3). (2)
We assume that g,,; has the direction of s. The stress tensor deviator components in (2)
are 145 = ndij (i, j =1, 2, 3).

We use a semiempirical expression [10] for the material function:

n—1

)7

n=nOZ(

oo % ()
where z=exp|— { —— — .
R T Ty
We use the formulas of [9] for the elongational flow!
dv I dv \?
Oy, = N(dy —dao)s dyy —dpg =3 —, 2 =3(—| ,
1= "Nn(dy 22)> iy 22 i 9 (ds)
and get the axial stress as '
Oy1 = NeZ (—l/?’_)n_i-1 (_fiﬂ) .
ds
The horizontal tension component is

H == Foy, cos @. 3

As tén'(pv=y’, secg = VITy?, ds=dx VIiFy?, F=Q/v, where the last is derived on the assump-
tion that p = comst, (1) and (3) become

v =2y | )
Hy
d 1 - 14y !
oo 1 (_pg \* VI g
e V3 (V3n02> ( Y ) VIS, ©)

Here y' = dy/dx, y"' = dy'/dx.

We take the temperature as uniform over the cross section. The heat transfer with
the environment, which has temperature T., is described by Newton's law. There are no
bulk heat sources. The heat-balance equation for a jet element ds long is [11]

pC,QAT = — all (T — T,) ds. (6)
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Fig. 2. Dependence of the maximum dimensionless sag on
B, K, and n: a) n = 0.2; b) 0.5; ¢) 1; d) 2. The num~
bers on the curves are the stretching factors.

The heat-transfer coefficient o may include a radiative component [12].

We introduce dimensionless variables and parameters:

X=_J§-’ Y:-‘l_/_._, V:L’B: T_T X*r—,Y*zi"'_i
! ! % To—T, i ;

1 1
h H ogl \7 l ogl \7
K:‘z_q}__, ="“—1A: e == ) 1B: = ( ) "

w1 V3 Qog (V3ﬂo

Then (4), (5), and (6) in dimensionless form are
BVILY?
AV

Y= , (7N

1+ V2

V= B(
y’/

) VIFTe, )

ViEve o

0= —St B,
14%

(9

Here a prime denotes a derivative with respect to X, St = 2abol/pcyQ is the Stanton number
for a ribbon jet, and St = 2malre/pcyQ is the same for a cylindrical jet.

The boundary conditions are

X=0,Y=0V=1,0=1, (10)
X=1Y=a V=K. (1D

At the point of maximum sag,
X=X, Y=Y, dVjdX=0. (12)

2. Isothermal Flow, The solution to (7)-(12) can be represented in quadratures for
T = constj as

__.CK—— v LA
aX 4y’
(8) can be written as
Y L
— = —V r(14 Y32,
dy BE

We separate the variables and integrate on the basis of (10) and (11) to get the dimension-
‘less velocity
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Here
& '__1...’_1 i '
[3:5 ch» EdE, Y’ = shg, V' (X = 1) = shg, Y' (X = 0) = shg,.
£ _
The dimensionless tension is
P SR S n
A [n(l—K ")B* ]n+1 (14
B
Equation (7) can be written as
v’  BVIFY?
dX AV
We separate the variables and integrate to get the longitudinal coordinate
x=Afy
= — | Vg&. 15
2 gy § (15)
We write (7) as
yr Y _ BVI{Y™
dy AV )
We separate the variables and integrate to get
A ¢
Y = sthgqg. (16)

_ In (13)-(16), £ is a parameter. The boundary values £, and £; are defined by the
take-up condition (11). From (15), (16), and (11) we get an integral-equation system for
Eo and £,

R
= [n1=K ")}”*‘ Vat, 17
5 e o
Gk E R
n(l— n n o
= ) V shidt. . 18
I 0o

The maximum-sag coordinates are defined by (12):

0

1 n
Y, = [_'_‘Q:j;géﬁ__)_] + é§Vsh§dg, (19)
L _fT 0
Sl

0

3. Solution Analysis. Nonisothermal effects, which are characterized by the
Stanton number, influence the longitudinal flow in the same way as does any increase in
the dilatant parameters [12]. St increase is qualitatively equivalent to increase in n,
so the analysis is performed only for the isothermal case. The initial data were!
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take~up point at the efflux level a = 0; 1.1 <K < 50; 0.2 s nsg 2; ~1 5 &, s-0.1. The
sequence was that we specified £, and determined &, from (18), and then (17) gave B, which
was used with £; in (19) to determine Yx.

Figure 2 shows that Y, increases with B and as K decreases. For n < 0.2, the sag is
almost independent of the stretching factor and is governed by B. For a Newtonian liquid
(n = 1) or a dilatant one (n > 1), the sag is very much dependent on the stretching factor.

Viscosity-anomaly effects have only a minor influence on the jet shape, as (20) shows
(Xy differs slightly from 0.5), and the shape for ¢ = 0 is close to parabolic. The axial-
velocity distribution is substantially dependent on the take-~up point. As a increases, so
does the axial-velocity gradient at the take-up point. One can vary a to control the
pulling mode and forming conditions within certain limits.

NOTATION

x and y, current coordinates of cross-section center; I, pulling zone length along
horizontal; h, take-up point ordinate; x, and y,, maximum sag coordinates; F, cross-section-
al area; v, axial velocity; ve and v;, initial and final velocitiesj H, horizontal tension
component; ¢ , tangent slope; s, jet length; p, polymer density; g, acceleration due to
gravity; Q, volume flow rate; Id , Strain rate tensor; Ojj, Stress components; p, isotropic
pressure; 6;:, Kronecker symbol; Tigs stress tensor deviator; n, viscesity; 1., second in-
variant of strain rate tensorj no and n, rheological constantsj z, temperature function;

E, activation energyj; R, universal gas constantj To, initial jet temperature; T, current
jet temperature; T., environmental temperature; cy, specific heat; M, current middle
perimeter; «, heat~transfer coefficienty X and ¥, dimensionless coordinates; 6, dimension-
less temperature; X, and Y., diMensionless maximum-sag coordinates; K, stretching factor;
a, A, B, B, Eo, &1, dimensionless parametersj St, Stanton number; b, initial flat jet
width} ro, initial jet radius; V, dimensionless velccity.

LITERATURE CITED

1. A. Zjabitsky, Theoretical Principles of Fiber Formation [Russian translationl}, Moscow
(1979).
2. "A method of measuring the viscosity of a high~viscosity liquid," Inventor's Certifi-
cate No. 1193526, IPC® G OL N 11/08.
3, V. D. Sevruk, "Stretching a molten thermoplastic at the exit from a shaper,”" Ph.D.
Thesis [in Russian], Moscow (1984).
4. V. M. Entov, S. M. Makhkamov, and K. V. Mukuk, Inzh.-Fiz. Zh., 34, No. 3, 514-518
(1978).
5. A. N. Prokunin and N. G. Proskurnina, Inzh.-Fiz. Zh., 34, No. 4, 625-629 (1978).
6. V. M. Entov and A. L. Yarin, Surveys of Science and Engineering [in Russian], Vol. 18
(1984), pp. 112-197.
7. Z. P. Shul'man and B. M, Khusid, Nonstationary Convective Transport in Media Showing
Inheritance [in Russian], Minsk (1983).
8. T, Carman and M. Biot, Mathematical Methods in Engineering [Russian translation],
Moscow-Leningrad (1948).
9. V. M. Shapovalov and N. V. Tyabin, Inzh.-Fiz. Zh., 41, No. 6, 1027~1031 (1981).
10. Han Chang Dey, Rheology in Polymer Processing [Russian translation], Moscow (1979).
11. V. M. Shapovalov, Inzh.-Fiz. Zh., 47, No. 2, 272-279 (1984).
12, V. M. Shapovalov and N. V. Tyabin, Inzh.-Fiz. Zh., 43, No. 1, 62-70 (1982).



